Abstract

Injectable polycaprolactone (PCL) porous beads were fabricated for use as cell carriers by a novel isolated particle-melting method (for nonporous beads) and the following melt-molding particulate-leaching method (for porous beads). The prepared beads showed highly porous and uniform pore structures with almost the same surface and interior porosities (porosity, over 90%). The PCL porous beads (bead size, 400-550 microm) with different pore sizes (25-50 and 50-100 microm) were compared for their in vitro cell (human chondrocyte) growth behavior with the nonporous beads. The porous beads showed higher cell seeding density and growth than the nonporous beads. The pore size effect between the porous beads was not significant up to 7 days, but after that time the beads with pore sizes of 50-100 microm showed significantly higher cell growth than those of 25-50 microm. To evaluate the tissue compatibility of the PCL porous beads, the beads were dispersed, uniformly, in cold Pluronic F127 solution and injected into hairless mice, subcutaneously, in the gel state of Pluronic F127 at room temperature, leading to the homogeneous bead delivery. The histological findings confirmed that the PCL porous beads in Pluronic F127 gel are biocompatible: surrounding tissues gradually infiltrated into the porous beads for up to 4 weeks with little inflammatory response. The PCL porous beads with highly porous and uniform pore structures fabricated in this study can be widely applicable as cell carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.