Abstract

Recently, ternary cobalt nickel sulfide, performing as the promising electrode material for supercapacitors has obtained great interests. Herein, the hollow and spinous NiCo2S4 nanotubes are designed and prepared through a simple hydrothermal reaction using the natural silk as the template. The spinous Ni-Co precursors are grown on the natural silk through a facile hydrothermal strategy and the hollow structure is obtained by decomposing the silk via hydrothermal sulfurization. After the calcination treatment, the hollow and spinous NiCo2S4 nanotubes are applied as the electrode material and exhibit better electrochemical performance than the solely vulcanized samples. In addition, owing to the unique hollow and spinous structure of NiCo2S4 nanotubes, the supercapacitor electrode material shows good specific capacitance (630 F g−1 at 1 A g−1), low internal resistance Rs (0.68 Ω) and high capacitance retention (91% after 3000 cycles) at 10 A g−1. Furthermore, an all-solid-state asymmetric supercapacitor is self-assembled with the SC400 composite and exhibits an energy density of 52.34 Wh kg−1 at the power density of 2206.37 W kg−1. Additionally, a blue LED indicator can be powered by connecting two ASCs in series. The prepared hollow and spinous NiCo2S4 nanotubes with excellent electrochemical properties can envision promising applications in energy storage devices and nanotechnology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.