Abstract

The problem of asymptotic stability and extended dissipativity analysis for the generalized neural networks with interval discrete and distributed time-varying delays is investigated. Based on a suitable Lyapunov–Krasovskii functional (LKF), an improved Wirtinger single integral inequality, a novel triple integral inequality, and convex combination technique, the new asymptotic stability and extended dissipativity criteria are achieved for the generalized neural networks with interval discrete and distributed time-varying delays. By the above methods, the less conservative asymptotic stability criteria are obtained for a special case of the generalized neural networks. By using the Matlab LMI toolbox, the derived new asymptotic stability and extended dissipativity criteria are expressed in terms of linear matrix inequalities (LMIs) that cover H_{infty }, L_{2}–L_{infty }, passivity, and dissipativity performance by setting parameters in the general performance index. Finally, we show numerical examples which are less conservative than other examples in the literature. Moreover, we present numerical examples for asymptotic stability and extended dissipativity performance of the generalized neural networks, including a special case of the generalized neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.