Abstract

The "inverse drug discovery" strategy is a potent means of exploring the cellular targets of latent electrophiles not typically used in medicinal chemistry. Cyclopropenone, a powerful electrophile, is generally used in bio-orthogonal reactions mediated by triarylphosphine or in photo-triggered cycloaddition reactions. Here, we have studied, for the first time, the proteome reactivity of cyclopropenones in live cells and discovered that the cyclopropenone warhead can specifically and efficiently modify a triple-negative breast cancer driver, glutathione S-transferase pi-1 (GSTP1), by covalently binding at the catalytic active site. Further structure optimization and signaling pathway validation have led to the discovery of potent inhibitors of GSTP1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call