Abstract
This article introduces a new RFID tag antenna designed for operation at 915 MHz. The proposed antenna is electrically small with dimensions (λ0/15) × (λ0/15). It features two vivaldi-like apertures flipped with respect to each other around an axis parallel to their slotted edges. Each aperture is loaded with a meander line with multiple loops. The two sides of the proposed antenna are fed via a common slot line that is coupled electromagnetically to a perpendicular microstrip line at the other side of a dielectric substrate. The new antenna are fabricated using printed circuit board technology and the fabricated prototype is experimentally characterized. The optimization and theoretical investigation of the proposed antenna are performed via both HFSS and CST. The two simulators agree very well with each other and with measurements. The characteristics of the new RFID antenna are generally good, such as: small size (22 mm2), low profile (0.8 mm), flexible impedance matching, reasonable impedance bandwidth (8%), omni-directional radiation, low cross-polarization level (−20 dB at broadside), acceptable radiation efficiency (76%), and gain (−0.3 dBi). © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 23: 639–645, 2013.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of RF and Microwave Computer-Aided Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.