Abstract

This work delves into the analysis of the Gilson–Pickering equation which governs the waves propagation in plasma physics by invoking Lie symmetry analysis. We commence by identifying the Lie point symmetries associated with the equation. These symmetries are then leveraged on to compute the commutator table and subsequently the adjoint representation, ultimately leading to the establishment of an optimal system of one-dimensional subalgebras. Each subalgebra within this system is subsequently utilized to perform symmetry reductions. Through these reductions, various forms of nonlinear ordinary differential equations are obtained, which are subsequently solved using the power series method and Kudryashov’s technique. The resulting solutions are given in terms of hyperbolic functions. To gain deeper insights into the behaviour of these solutions, three-dimensional and two-dimensional plots are presented. Furthermore, applying the Ibragimov’s theorem allows us to derive conserved vectors associated with the Gilson–Pickering equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.