Abstract

The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C8-6-I and C8-6-N, at a concentration of 0.1 μM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C8-6-I and C8-6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 105 M-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call