Abstract
In this work, a novel bamboo-like carbon nanotubes@Sn4P3@carbon (BLCNTs@Sn4P3@C) coaxial nanotubes are designed and prepared using a newly developed hydrothermal method followed by a phophidation process. The prepared Sn4P3 nanoparticles are uniformly coated and wrapped on the one-dimensional (1D) bamboo-like CNTs, which is covered by a uniform carbon layer to form a sandwich-like structure with Sn4P3 in between. The inner CNT and outer carbon can effectively maintain the structural stability and serve as the good electron conductors. Additionally, the outer carbon coating layer can effectively keep BLCNTs@Sn4P3@C nanotubes separate each other, preventing aggregation of Sn4P3 during charge/discharge when this material is used as anode for sodium ion batteries. The anode of BLCNTs@Sn4P3@C shows excellent reversible capacity and a long cycling of over 2000 cycles. The unique design of coaxial nanotubes is greatly beneficial to the electrochemical performance of Sn4P3 for sodium ion storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.