Abstract

A porous material is considered to be a potential material that can be used to repair bone defects. However, the methods of designing of a highly porous structure within the allowable stress range remain to be researched. Therefore, this study was aimed at presenting a method for generating a three-dimensional tetrahedral porous structure characterized by low peak stress and high porosity for the reconstruction of mandibular defects. Firstly, the initial tetrahedral porous structure was fabricated with the strut diameters set to 0.4 mm and a mean cell size of 2.4 mm in the design model space. Following this, the simulation analysis was carried out. Further, a homogenization algorithm was used for homogenizing the stress distribution, increasing porosity, and controlling peak stress of the porous structure by adjusting the strut diameters. The results showed that compared with the initial porous structure, the position of the large stress regions remained unchanged, and the peak stress fluctuated slightly in the mandible and fixation system with the optimized porous structure under two occlusions. The optimized porous structure had a higher porosity and more uniform stress distribution, and the maximum stress was lower than the target stress value. The design and optimization technique of the porous structure presented in this paper can be used to control peak stress, improve porosity, and fabricate a lightweight scaffold, which provides a potential solution for mandibular reconstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call