Abstract

In this paper, density functional theory calculations by using ultrasoft pseudo-potential technique are performed to investigate the structural and magnetic properties of XAs (X = Ti, V, Cr, Mn, Fe, and Co) binary compounds in the metastable zinc-blende structure. Accurate analysis of electron density is applied for novel interpretation of bonding and magnetism in these arsenides. It is shown that bond stiffness has a consistent behaviour with electron density at bond points, while bond strength may exhibit a different behavior. We show that the electronic density of states of VAs, CrAs, and MnAs satisfy the Stoner criterion and hence give rise to a ferromagnetic ground state. It is argued that the spin splitting of the bond properties is originated from the interatomic exchange interaction and hence is correlated with the Curie temperature of materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call