Abstract

BackgroundColorectal cancer (CRC) is the 3rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.Methods3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.ResultsMany anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and −6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.ConclusionsOur findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.

Highlights

  • Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide

  • This study demonstrated that inhibitor 3c induces apoptosis mediated by increased production of reactive oxygen species in colorectal cancer cells

  • Prepared 10 μL of MTT 3(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (5 mM) solutions were added to the cells and was further incubated for 2 h at 37 °C in 5% CO2. 100 μL of dimethyl sulfoxide (DMSO) were added in each well to dissolve the crystal of formazan, which formed in the reaction of MTT at the time of incubation

Read more

Summary

Introduction

Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the US and is associated with high mortality. CRC is the 3rd most common cause of cancer globally [1]. The basis for the high mortality in patients with colorectal cancer is the formation of distant metastasis. Colorectal cancer patients diagnosed at early stage have a 5 year-survival rate of about 90%, which decreases to 65% with lymph node metastasis and to

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call