Abstract

Type 2 diabetes mellitus has reached epidemic proportions; therefore, the search for novel antihyperglycemic drugs is intense. We have discovered that D-xylose increases the rate of glucose transport in a non-insulin-dependent manner in rat and human myotubes in vitro. Due to the unfavorable pharmacokinetic properties of D-xylose we aimed at synthesizing active derivatives with improved parameters. Quantitative structure-activity relationship analysis identified critical hydroxyl groups in D-xylose. These data were used to synthesize various hydrophobic derivatives of D-xylose of which compound 19 the was most potent compound in stimulating the rate of hexose transport by increasing the abundance of glucose transporter-4 in the plasma membrane of myotubes. This effect resulted from the activation of AMP-activated protein kinase without recruiting the insulin transduction mechanism. These results show that lipophilic D-xylose derivatives may serve as prototype molecules for the development of novel antihyperglycemic drugs for the treatment of diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.