Abstract

In this work, hydrazine-functionalized perylene diimide derivative supramolecular (HPDS), a novel self-enhanced donor-acceptor-donor (D-A-D) type aggregates with excellent photoelectric activity, was synthesized by a facile one-pot green route and further applied in construction of coreactant-free photoelectrochemical (PEC) biosensor for ultrasensitive DNA assay. Impressively, the HPDS formed by D-A-D units not only possessed effectively shorted electron-transfer path between donor and acceptor, but also presented a desiring aggregate state via the π-π stacking of perylene core and hydrogen bonding of the terminal moiety, thereby acquiring a high density electron flow for generating the extremely high PEC signal. Experimental data showed that the well film-formed HPDS aggregate could produce an exciting photocurrent intensity about 6-fold stronger than that of precursor perylene dianhydride with donor N2H4 in detection buffer and even 12-fold than that of perylene dianhydride only. In this respect, the resultant HPDS aggregate as a novel self-enhanced PEC signal tag was adopted to fabricate the coreactant-free PEC biosensor with the help of target dual-recycling-induced bipedal DNA walker cascade amplification strategy for ultrasensitive DNA (a fragment of TP53 gene) assay. The proposed biosensor showed a high sensitivity with a low detection limit down to femtomole level, providing a new avenue for sensitive bioanalysis and clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.