Abstract
Herein, we report a simple and novel approach for the design of fluorescent chemosensor through the self-assembly of functionalized monomer molecules. According to these approach, a novel supramolecular fluorescent chemosensor (SPMS) was successfully constructed by self-assembly of a quinoline hydrazone functionalized pillar[5]arene monomer PM. Interestingly, upon the addition of CN-, the solution of SPMS instantly shows dramatic fluorescent enhancement and emitting bright blue emission. Meanwhile, the fluorescence quantum yields show distinct increase from 0.0582 of SPMS to 0.3952 of SPMS + CN-. The detection limit (LOD) of SPMS for CN- is 9.70 × 10-8 M, which indicated high sensitivity. Moreover, the SPMS is selective for CN- even in the presence of other anions, the fluorescent detection process of SPMS for CN- was not interfered by other competitive anions (F-, Cl-, Br-, I-, N3-, OH-, SCN-, HSO4-, AcO-, H2PO4- and ClO4-). Notably, in the CN- sensing process, the self-assembly structure of the supramolecular chemosensor SPMS didn't show any disassembly. This work provides a novel approach for instant detection of CN- through a self-assembled supramolecular fluorescent chemosensor in aqueous system. Moreover, the test strips based on SPMS were fabricated, which could serve as convenient and efficient CN- test kits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have