Abstract

A novel amine functionalized nonwoven cotton fabric (EDA-GMA-g-NCF) adsorbent material for As(V) adsorption was prepared by using plasma-initiated graft polymerization of glycidyl methacrylate (GMA) onto nonwoven cotton fabric (NCF) and then its modification with ethylenediamine (EDA). The resultant nonwoven cotton fabric adsorbent was examined by using FT-IR, SEM, and XPS techniques. As(V) adsorption experiments were performed in batch mode as a function of pH, contact time, initial concentration, coexisting ions, ionic strength, and tap water applications. Ethylenediamine carrying nonwoven cotton fabric-based functional adsorbent showed efficient, rapid As(V) removal with high adsorption capacity. The experimental data shows that adsorption mechanism fits to the Langmuir isotherm, and adsorption kinetic follows a pseudo-second-order model. Between pH 2-8 range, nonwoven cotton fabric adsorbent is effective at pH 3 for As(V) adsorption. The maximum adsorption capacity of the nonwoven cotton fabric for As(V) was 217.39mg/g. The adsorbent could be easily regenerated at least ten cycles with 3% HNO3 solution. EDA-GMA-g-NCF was also efficient for tap water applications with high percent As(V) removal. Thermodynamic parameters show that the As(V) adsorption process was spontaneous and exothermic. Graphical abstract Preparation of cotton fabric adsorbent and As(V) treatment process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call