Abstract
This paper presents a design approach to systematically synthesize feasible configurations for series–parallel and parallel hybrid transmissions subject to design constraints and required operation modes using a simple planetary gear train (PGT). The configuration synthesis process includes two main steps: (1) assign inputs and output powers to the PGT subject to design constraints by the power arrangement process and (2) assign clutches and brakes to the obtained systems subject to desired operation modes by the clutch arrangement process. By applying the proposed design approach, 9 clutchless and 31 clutched configurations for series–parallel and parallel hybrid transmission systems are synthesized, respectively. For each type of the hybrid systems, we analyzed kinematics and power flows of a new configuration to demonstrate the feasibility of the synthesized systems. The design approach can be used to systematically synthesize future hybrid transmissions with different mechanisms, design constraints, and desired operation modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.