Abstract

AbstractAs part of a broader study of ceramic nuclear waste‐forms, four different lanthanide titanates were fabricated; La0.1Sm0.1Gd0.1Tb0.1Dy0.3Ho0.1Er0.2YbTiO5, Sm0.3Gd0.3Dy0.3Yb1.1TiO5, Sm0.1Gd0.4Dy0.4Yb1.1TiO5, and Sm0.2Gd0.2Dy0.2Yb1.4TiO5. The aim was to produce single‐phase novel materials with cubic symmetry, capable of incorporating a wide variety of cations and with acceptable radiation tolerance. The chemistry flexibility and radiation tolerance are some of the major desirable properties for nuclear waste‐form materials. By using multiple lanthanides the average lanthanide radius can be controlled and consequently the structure, along with properties such as radiation tolerance. The radiation tolerance was assessed using in situ 1 MeV krypton irradiation and transmission electron microscopy characterization. Those materials for which cubic symmetry was achieved displayed better radiation tolerance; a greater critical fluence of ions (Fc) was required for the crystalline to amorphous transition, and a lower temperature was required to maintain crystallinity (Tc) during irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.