Abstract

The development of biosensors capable of assessing umami intensity has elicited significant attention. However, the detection range of these biosensors is constrained by the sensing components and strategies used. In this study, we introduce a novel competitive, ultra-high-sensitivity impedance biosensor by utilizing composite nanomaterials and T1R1 as a composite signal probe. Pd/Cu-TCPP(Fe) had a substantial surface area, effectively enhancing the loading capacity of the T1R1 and thus augmenting the biosensor's recognition precision. Furthermore, the Pd/Cu-TCPP(Fe) elevated peroxidase-like activity catalyzed the formation of insoluble precipitates of 4-chloro-1-naphthol (4-CN), resulting in cascaded amplification of the impedance signal. The remarkable catalytic activity of the composite signal probe endowed the biosensor with exceptional analytical performance, featuring a limit of detection (LOD) of 0.86 pg/mL and a linear detection range spanning from 10 to 10,000 pg/mL. Successful application of the biosensor for umami detection in fish was demonstrated, signifying its substantial potential in food-flavor evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call