Abstract

Novel cis- and trans-configured bis(oxime)platinum(II) complexes have been synthesized and characterized by elemental analyses, IR, electrospray ionization mass spectrometry, multinuclear ((1)H, (13)C, and (195)Pt) NMR spectroscopy, and, in five cases, by X-ray diffraction. Their cytotoxicity was studied in the cisplatin-sensitive CH1 cell line as well as in inherently cisplatin-resistant SW480 cancer cells. Remarkably, every single dihalidobis(oxime)platinum(II) complex (with either a cis or trans configuration) shows a comparable cytotoxic potency in both cell lines, indicating a capacity of overcoming cisplatin resistance. Particularly strong cytotoxicities were observed in the case of trans-[PtCl(2)(R(2)C=NOH)(2)] (R = Me, n-Pr, i-Pr) with IC(50) values in the high nanomolar concentration range in both CH1 and SW480 cancer cells. These complexes are as potent as cisplatin in CH1 cells and up to 20 times more potent than cisplatin in SW480 cells. In comparison to transplatin, the novel compounds are up to 90 (CH1) and 120 times (SW480) more cytotoxic. The previously reported observation that the trans geometry yields a more active complex in the case of [PtCl(2)(Me(2)C=NOH)(2)] could be confirmed for at least two structural analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call