Abstract

Novel platinum complexes of trans geometry [PtCl(2){(Z)-R(H)C═NOH}(2)] [R = Me (1), Et (3)] and [PtCl(2){(E)-R(H)C═NOH}{(Z)-R(H)C═NOH}] [R = Me (2), Et (4)] as well as the classic trans-[PtCl(2)(R(2)C═NOH)(2)] [R = Me, Et] were reacted with an equivalent amount of silver acetate in acetone solution at ambient temperature, resulting in formation of unprecedented head-to-tail-oriented oximato-bridged dimers [PtCl{μ-(Z)-R(H)C═NO}{(Z)-R(H)C═NOH}](2) [R = Me (5), Et (7)], [PtCl{μ-(Z)-R(H)C═NO}{(E)-R(H)C═NOH}](2) [R = Me (6), Et (8)], and [PtCl(μ-R(2)C═NO)(R(2)C═NOH)](2) [R = Me (9), Et (10)], correspondingly. The dimeric species feature a unique six-membered diplatinacycle and represent the first example of oxime ligands coordinated to platinum via the oxygen atom. All complexes were characterized by elemental analyses, electrospray ionization mass spectrometry, IR and multinuclear ((1)H, (13)C, and (195)Pt) NMR spectroscopy, as well as X-ray diffraction in the cases of dimers 6 and 9. Furthermore, the crystal and molecular structures of a trimeric oximato-bridged complex 11 comprising three platinum units connected in a chain way were established. The cytotoxicity of both dimers and the respective monomers was comparatively evaluated in three human cancer cell lines: cisplatin-sensitive CH1 cells as well as cisplatin-resistant SW480 and A549 cells, whereupon structure-activity relationships were drawn. Thus, it was found that dimerization results in a substantial (up to 7-fold) improvement of IC(50) values of (aldoxime)Pt(II) compounds, whereas for the analogous complexes featuring ketoxime ligands the reverse trend was observed. Remarkably, the novel dimers yielded no cross-resistance with cisplatin in SW480 cells, exhibiting up to 2-fold enhanced cytotoxicity in comparison with the CH1 cell line and thereby possessing a promising potential to overcome resistance toward platinum anticancer drugs. The latter point was also confirmed by investigating the potency of apoptosis induction in the case of one monomer as well as one dimer; the investigated complexes proved to be strong apoptotic agents which could induce cell death even in the cisplatin-resistant SW480 cell line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.