Abstract

To modify the surface of denture base material by coating it with cinnamon-laden nanofibers to reduce Candida albicans (C. albicans) adhesion and/or proliferation. Heat-cured poly(methyl methacrylate) (PMMA) specimens were processed and coated, or not, with cinnamon-laden polymeric nanofibers (20 or 40 wt.% of cinnamon relative to the total polymer weight). Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses of the nanofibers were performed. Antifungal activity was assessed through agar diffusion and colony-forming unit (CFU/mL) assays. Representative SEM morphological analysis was carried out to observe the presence/absence of C. albicans on the fibers. Alamar blue assay was used to determine cell toxicity. Analysis of variance and the Tukey's test were used to analyze the data (α = 0.05). SEM imaging revealed nanofibers with adequate (i.e., bead-free) morphological characteristics and uniform microstructure. FTIR confirmed cinnamon incorporation. The cinnamon-laden nanofibers led to growth inhibition of C. albicans. Viable fungal counts support a significant reduction on CFU/mL also directly related to cinnamon concentration (40 wt.%: mean log 6.17CFU/mL < 20 wt.%: mean log 7.12CFU/mL), which agrees with the SEM images. Cinnamon-laden nanofibers at 40 wt.% led to increased cell death. The deposition of 20 wt.% cinnamon-laden nanofibers onto PMMA surfaces led to a significant reduction of the adhesive and/or proliferative ability of C. albicans, while maintaining epithelial cells' viability. The high recurrence rates of denture stomatitis are associated with patient non-adherence to treatments and contaminated prostheses use. Here, we provide the non-patients' cooperation sensible method, which possesses antifungal action, hence improving treatment effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.