Abstract

Herein, four different grafted chitosans were synthesized by covalent attachment of glycine, L-arginine, L-glutamic acid, or L-cysteine to the chitosan chains. All products were subsequently permethylated to obtain their corresponding quaternary ammonium salts to enhance the inherent antimicrobial properties of native chitosan. In all cases, transparent hydrogels with the following remarkable characteristics were obtained: i) high-water absorption capacity (32–44 g H2O per g of polymer), ii) viscoelastic behavior at low deformations, iii) flexibility when subjected to deformations and iv) stability over long time scales. All the permethylated derivatives successfully inhibited 100 % of the growth of S. aureus. They also exhibited higher antimicrobial activity against E. coli than native chitosan. The structure of the chemically crosslinked products was more stable under external perturbations than that of the physically crosslinked ones. Between the chemically crosslinked products, the permethylated glutamic acid-grafted chitosan exhibited a noteworthy higher water absorption capacity with respect to that modified with cysteine, which makes it the most promising material for various industrial applications, including biomedical and food industries. Regarding biomedical applications, this derivative met the required physicochemical criteria for wound dressings, which encourages the pursuit of biological studies necessary to ensure the safety of its use for this application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.