Abstract

Constructing the electron transport pathway in a conductive gel membrane wound dressing could promote wound healing, but it always needs an external power supply that bright much inconvenience in clinical practice. In this paper, we design a novel all-in-one self-powered electronic stimulated wound dressing that integrating supercapacitor with sodium hyaluronate based hydrogel. The supercapacitor layer provides the required continuously electrical energy for the wound-dressing layer, where sodium hyaluronate is used as substrate material in both layers for forming the advanced all-in-one structure. During the course of clinical treatment, the electrical stimulation self-powered by supercapacitor would enable patients to perform electrical stimulation wound treatment anytime and anywhere no need on the back ward of a hospital. At the same time, introducing sodium hyaluronate as the active substance and polyelectrolyte would promote cell proliferation and accelerate wound healing, and improve electrochemical performance of supercapacitors. The all-in-one wound dressing has good mechanical properties, high water absorption capacity, and excellent biocompatibility to meet the practical requirements of clinical wound dressings. The supercapacitor layer in the all-in-one wound dressing has good electrochemical performance for charging and discharging before and after usage for wound treatment, and the wound dressing layer enhances the proliferative activity of NIH3T3 cells and accelerate the wound healing process in mice under the action of electrical stimulation provided by the supercapacitor. This study demonstrates that the all-in-one wound dressing would be an attractive candidate for portable wound healing, and broaden the scope of flexible electronics for biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.