Abstract
Synthesis of maleated pimaric acid (MPA) cellulose esters is first reported in this work. Cellulose esterification was performed by reacting microcrystalline cellulose with monoacid chloride of MPA (MPA-Cl) in presence of pyridine as catalyst and reaction medium. The syntheses were started in a heterogeneous solid–liquid reaction medium, but as the reaction advanced, the reaction mass turned into a homogeneous solution. The effects of MPA-Cl/anhydroglucose unit molar ratio, reaction temperature, and reaction duration on the yield and degree of substitution (DS) of cellulose esters (CEs) were investigated. CEs with DS ranging from 2.6 to 2.8 were achieved at molar ratios of 5.5–6.0 after 12–16 h at 118 °C. The purified products were characterized by elemental analysis, IR and 13C-NMR spectroscopy, and thermogravimetric analysis. CEs are soluble or partially soluble in usual organic solvents, depending on DS. Transparent films were prepared using CE-cyclohexanone solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.