Abstract

In this paper, novel cationic chitosan derivative possessing 1,2,3-triazolium and pyridinium groups was synthesized conveniently via cuprous-catalyzed azide-alkyne cycloaddition (CuAAC) and methylation. FTIR, 1H NMR, and elemental analysis examined the structural characteristics of the synthesized derivatives. The antifungal efficiencies of chitosan derivatives against three plant-threatening fungi were assayed by hypha measurement in vitro. The determination showed that chitosan derivative bearing 1,2,3-triazolium and pyridinium displayed tremendously enhanced antifungal activity as compared with chitosan and chitosan derivative bearing 1,2,3-triazole and pyridine. Notably, the inhibitory indices of it against Colletotrichum lagenarium attained 98% above at 1.0mg/mL. The results showed that N-methylation of 1,2,3-triazole and pyridine could effectively enhance antifungal activity of the synthesized chitosan derivatives. Besides, the prepared chitosan derivatives showed non-toxic effect on cucumber seedlings. This synthetic strategy might provide an effective way and notion to prepare novel cationic chitosan antifungal biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.