Abstract

As one of the most promising biopolymers for a variety of potential applications, chitosan has attracted much attention because of its unique biological, chemical, and physical properties. The functionalization of chitosan has been adopted to synthesize novel chitosan derivatives with improved water-solubility and excellent biological activities. In this paper, chitosan was functionalized with a triphenylphosphonium group by means of the copper (I) catalyzed azide-alkyne “click” reaction and has been investigated as potential polymer for agricultural antifungal biomaterial. The influence of chemical modification on the structural characteristics and water-solubility of chitosan was investigated by FTIR spectroscopy, 1H NMR spectroscopy, elemental analysis, and UV–vis spectrum. Furthermore, the antifungal property of target chitosan derivative against four plant threatening fungal pathogens was evaluated and in vitro investigation demonstrated that triphenylphosphonium salt incorporated chitosan backbone had excellent antifungal property compared with chitosan and intermediate chitosan derivative. Notably, target chitosan derivative displayed relatively strongest antifungal effect with over 80% inhibitory index against Botrytis cinerea at 1.0 mg/mL. The results of a detailed antifungal study indicated that cationic chitosan derivative bearing 1,2,3-triazole and triphenylphosphonium moieties provided a promising platform for preparation of novel cationic antifungal biomaterials in the field of agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.