Abstract
The dimensionality of materials plays an important role in the photocatalytic applications. Herein, we report a novel photocatalyst by implanting zero-dimensional carbon quantum dots (CQDs) within one-dimensional porous tubular graphitic carbon nitride (g-C3N4) on carbon cloth (CC). The degradation of ciprofloxacin under visible light irradiation can be 98% obtained within 60 min by the photocatalyst (g-C3N4/CQD/CC), due to the improvement of light absorption and reduction of rapid recombination of photogenerated carriers of the g-C3N4/CQD micro-regional heterojunction. In addition, density functional theory (DFT) calculation and a set of characterisation were applied to study the influence of implanted CQDs on the band gap and charge behavior of g-C3N4/CQD/CC. Moreover, a novel multilayer photocatalytic reactor was designed to simulate the degradation capability of g-C3N4/CQD/CC by flowing wastewater, which exhibits excellent photocatalysis performance. The introduction of a CC substrate can improve the separation and cycle life of this new photocatalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.