Abstract

A new microelectromechanical-systems capacitive pressure sensor with extremely high sensitivity (2.24 ¿F/kPa) is introduced. The sensor essentially consists of a small drop of mercury and a flat aluminum electrode that are separated by a 1 ¿m-thick layer of Barium Strontium Titanate (a high dielectric-constant ceramic). The assembly constitutes a parallel-plate capacitor where the surface area of the electrodes is variable to a high degree. The mercury drop is pressured by a small corrugated metal diaphragm. As the electrode area of the parallel-plate capacitor varies, a total change in capacitance of more than 6 ¿F is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.