Abstract

Mycobacterium tuberculosis (Mtb) survives inside a human host for a long time in the form of latent tuberculosis infection (LTBI). Latent infection of tuberculosis has the opportunity of developing into active tuberculosis (ATB), which has greatly endangered human health. The existing diagnostic methods cannot effectively distinguish LTBI from ATB. Therefore, more effective diagnostic biomarkers and methods are urgently needed. Here, we screened the GEO data set, conducted joint differential analysis and target gene enrichment analysis, after filtering the disease-related database, we screened the differential miRNA related to TB. The qPCR was used to verify the miRNAs in 84 serum samples. Different combinations of biomarkers were evaluated by logistic regression to obtain a biomarker panel with good performance for diagnosing LTBI. A panel with two miRNAs (hsa-let-7d-5p, hsa-miR-140-5p) was established to differentiate LTBI from ATB. Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) are 0.930 (sensitivity = 100%, specificity = 88.5%) and 0.923 (sensitivity = 100%, specificity = 92.3%) with the biomarker panel for the training set and test set respectively. The findings indicated that the logistic regression model built by let-7d-5p and miR-140-5p has the ability to distinguish LTBI from active TB patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.