Abstract

A series of quaternary Zn-Al-Cu-Li alloys with different weight fractions of Cu, Al, and Li were developed and investigated for potential application in high load bearing bioresorbable implants. The developed alloys provided various fractions of binary and ternary intermetallic structures, which resulted in formation of multiphase microstructures containing a zinc-rich η-phase and LiZn4 and CuZn4 phases. The intermetallic phases promoted grain refinement and a good combination of mechanical properties. The developed Zn-2Al-4Cu-0.6Li alloy showed strength and ductility close to commercially pure Ti alloys with a UTS value of ∼535 MPa and elongation of 37%. The examination of in vitro corrosion behavior of the developed alloys in the modified Hanks' solution revealed suitable corrosion rates (∼38.5 μm/year). The moderate corrosion rate was controlled by the formation of a homogeneous layer of stable corrosion products that protected the alloys from the corrosive environment, particularly in the late stages of immersion. The developed alloys with the most promising mechanical and corrosion properties appeared to be biocompatible to mouse fibroblast cells and human umbilical mesenchymal stem cells, making them suitable candidates for implant applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call