Abstract

Bioceramic/polymer composites have dragged a lot of attention for treating hard tissue damage in recent years. In this study, we synthesized barium-doped baghdadite (Ba-BAG), as a novel bioceramic, and later developed fibrous composite poly (hydroxybutyrate) co (hydroxyvalerate)- polycaprolactone (PHBV-PCL) scaffolds containing different amounts of baghdadite (BAG) and Ba-BAG, intended to be used in bone regeneration. Our results demonstrated that BAG and Ba-doped BAG powders were synthesized successfully using the sol-gel method and their microstructural, physicochemical, and cytotoxical properties results were evaluated. In the following, PHBV/PCL composite scaffolds containing different amounts of BAG and Ba-BAG (1, 3, and 5 wt%) were produced by the wet electrospinning method. The porosity of scaffolds decreased from 78% to 72% in Ba-BAG-incorporated PHBV/PCL scaffolds. The compressive strength of the scaffolds was between 4.69 and 9.28 kPa, which was increased to their maximum values in the scaffolds with Ba-BAG. The presence of BAG and Ba-BAG in the polymer scaffolds resulted in increasing bioactivity, and it was introduced as a suitable way to control the degradation rate of scaffolds. The presence of the BAG component was a major reason for higher cell proliferation in reinforced PHBV/PCL polymeric scaffolds, while Ba existence played its influential role in the higher osteogenic activity of cells on Ba-BAG incorporated PHBV/PCL scaffolds. Thus, the incorporation of Ba-BAG bioceramic materials into the structure of polymeric PHBV/PCL scaffolds promoted their various properties, and allow these scaffolds to be used as promising candidates in bone tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call