Abstract
Thyroid hormones (THs) classically regulate the gene expression by transcriptional mechanisms. In pituitary, the encoding genes for growth hormone (GH) and thyroid-stimulating hormone (TSH) are examples of genes regulated by triiodothyronine (T3) in a positive and negative way, respectively. Recent studies have shown a rapid adjustment of GH and TSH synthesis/secretion induced by T3 posttranscriptional actions. In somatotrophs, T3 promotes an increase in Gh mRNA content, poly(A) tail length and binding to the ribosome, associated with a rearrangement of actin cytoskeleton. In thyrotrophs, T3 reduces Tshb mRNA content, poly(A) tail length and its association with the ribosome. In parallel, it promotes a redistribution of TSH secretory granules to more distal regions of the cell periphery, indicating a rapid effect of T3 inhibition of TSH secretion. T3 was shown to affect the content of tubulin and the polymerization of actin and tubulin cytoskeletons in the whole anterior pituitary gland, and to increase intracellular alpha (CGA) content. This review summarizes genomic and non-genomic/posttranscriptional actions of TH on the regulation of several steps of GH and TSH synthesis and secretion. These distinct mechanisms induced by T3 can occur simultaneously, even though non-genomic effects are promptly elicited and precede the genomic actions, coexisting in a functional network within the cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have