Abstract
Abstract We explore the algebraic structure of a particular ansatz of the Yang-Baxter equation (YBE), which is inspired by the Bethe Ansatz treatment of the asymmetric simple exclusion process spin-model. Various classes of Hamiltonian density arriving from the two types of R-matrices are found, which also appear as solutions of the constant YBE. We identify the idempotent and nilpotent categories of such constant R-matrices and perform a rank-1 numerical search for the lowest dimension. A summary of the final results reveals general non-Hermitian spin-1/2 chain models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have