Abstract

Dual-target drug design was considered as the more reasonable antifungal strategy. In this study, three different series of novel compounds were designed using the skeleton screening and splicing method based on dual-target enzyme features, and their structures were synthesized and characterized. Among them, target compounds 5a-1-2, 14b-1-2, and 14c-2-1 with excellent antifungal activity (0.125-2.0 μg/mL) were selected for the subsequent mechanistic study. On the one hand, these compounds blocked the ergosterol biosynthesis pathway by inhibiting the core enzyme CYP51, which effectively induced rapid accumulation of reactive oxygen species, damaged the mitochondrial function, and eventually led to the occurrence of fungal apoptosis. On the other hand, these compounds also inhibited the inflammatory inducible enzyme cyclooxygenase-2, which further affected the expression of inflammatory factors and body's immune function. In conclusion, this study discovered potential target compounds, which could accelerate the rehabilitation process of the infected region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.