Abstract
This paper summarizes the results of recent dedicated experiments on disruption control and runaway mitigation carried out in ADITYA, which are of the utmost importance for the successful operation of large size tokamaks, such as ITER. It is quite a well-known fact that disruptions in tokamaks must be avoided. Disruptions, induced by hydrogen gas puffing, are successfully avoided by two innovative techniques in ADITYA using a bias electrode placed inside the last closed flux surface and applying an ion cyclotron resonance pulse with a power of ∼50 to 70 kW. These experiments led to better understanding of the disruption avoidance mechanisms and also can be thought of as one of the options for disruption avoidance in ITER. In both cases, the physical mechanism seems to be the control of magnetohydrodynamic modes due to increased poloidal rotation of edge plasma generated by induced radial electric fields. Real time avoidance of disruption with identifying proper precursors in both the mechanisms is successfully attempted. Further, analysing thoroughly the huge database of different types of spontaneous and deliberately-triggered disruptions from ADITYA, a significant contribution has been made to the international disruption database (ITPA). Furthermore, the mitigation of the runaway electron generated mainly during disruptions remains a challenging topic in present tokamak research as these high-energy electrons can cause severe damage to in-vessel components and the vacuum vessel. A simple technique has been implemented in ADITYA to mitigate the runaway electrons before they can gain high energies using a localized vertical magnetic field perturbation applied at one toroidal location to extract runaway electrons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have