Abstract

Phosphates, whose obvious disadvantage is the relatively small birefringence, can be overcome by the introduction of post-transition metal cations containing stereochemically active lone-pair electrons. In this paper, two new compounds were successfully explored in the A-Sb-P-O system, i.e. Cs2Sb3O(PO4)3 (CsSbPO) and (NH4)2Sb4O2(H2O)(PO4)2[PO3(OH)]2 (NH4SbPOH). Transmission spectra show that CsSbPO has a surprising transmission range with a UV cutoff edge of 213 nm. First-principles calculations show that both compounds have a wide band gap (5.02 eV for CsSbPO and 5.30 eV for NH4SbPOH) and enlarged birefringence (Δn = 0.034@1064 nm for CsSbPO and Δn = 0.045@1064 nm for NH4SbPOH). The results of real-space atom-cutting investigations show that the distorted [SbOx] polyhedra originating from the asymmetric lone pair electrons give the main contribution to the total birefringence and overcome the disadvantage of small birefringence of phosphates but maintain wide transition windows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call