Abstract
In order to confirm the relation between stent struts and the jailed side branch (SB), the actual wire re-crossing position and the optimal wire re-crossing position during a bifurcation stenting, we developed the instant stent-accentuated three-dimensional optical coherence tomography (iSA 3D-OCT) system based on a novel algorithm. Stent struts in two-dimensional optical coherence tomography (2D-OCT) are represented as high-intensity line segments or spots in low-intensity background. Stent struts disappear and a vessel image is created by the mean filter followed by the minimum filter. A strut image is created by subtracting a vessel image from an original image, and accentuated. By adding a vessel image to a strut image, iSA 2D-OCT is created. It took only 3s to accentuate stent struts of 100 frames by ImageJ with its macro program. By the iSA 3D-OCT system which consists of the console of OCT, the USB selector, USB cables, the USB flash drive, the computer, and three freeware programs, it took about 65s from an export of the image data to an observation of iSA 3D-OCT semi-automatically. During a bifurcation stenting procedure, we could confirm the relation between stent struts and the jailed SB, the actual wire re-crossing position and the optimal wire re-crossing position. Using the iSA 3D-OCT system, a detailed process during a bifurcation PCI can be observed in very short waiting time, about 65s. It is expected to improve the outcome of a complicated bifurcation PCI by the iSA 3D-OCT system.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have