Abstract

The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call