Abstract
BackgroundMutations in the aggrecan (ACAN) gene can cause short stature (with heterogeneous clinical phenotypes), impaired bone maturation, and large variations in response to growth hormone (GH) treatment. For such cases, long-term longitudinal therapy data from China are still scarce. We report that a previously unknown ACAN gene variant reduces adult height and we analyze the GH response in children from an affected large Chinese family.MethodsTwo children initially diagnosed with idiopathic short stature (ISS) and a third mildly short child from a large Chinese family presented with poor GH response. Genetic etiology was identified by whole exome sequencing and confirmed via Sanger sequencing. Adult heights were analyzed, and the responses to GH treatment of the proband and two affected relatives are summarized and compared to other cases reported in the literature.ResultsA novel ACAN gene variant c.7465 T > C (p. Gln2364Pro), predicted to be disease causing, was discovered in the children, without evident syndromic short stature; mild bone abnormity was present in these children, including cervical-vertebral clefts and apophyses in the upper and lower thoracic vertebrae. Among the variant carriers, the average adult male and female heights were reduced by − 5.2 and − 3.9 standard deviation scores (SDS), respectively. After GH treatment of the three children, first-year heights increased from 0.23 to 0.33 SDS (cases in the literature: − 0.5 to 0.8 SDS), and the average yearly height improvement was 0.0 to 0.26 SDS (cases in the literature: − 0.5 to 0.9 SDS).ConclusionsWe report a novel pathogenic ACAN variant in a large Chinese family which can cause severe adult nonsyndromic short stature without evident family history of bone disease. The evaluated cases and the reports from the literature reveal a general trend of gradually diminishing yearly height growth (measured in SDS) over the course of GH treatment in variant-carrying children, highlighting the need to develop novel management regimens.
Highlights
Mutations in the aggrecan (ACAN) gene can cause short stature, impaired bone maturation, and large variations in response to growth hormone (GH) treatment
ACAN variant and functional in silico prediction Whole exome sequencing to a median of 150× 125.47 (125.47~ 165.65) coverage in the index patients identified 825,823 genetic variants of which 119 were not found in dbSNP137, ExAC, the 1000 Genomes database, or in internal database at 0.5% allele frequency
Amino acid conservation analysis showed that the affected site was highly conserved in at least fifteen species, including humans (Additional file 1: Figure S1)
Summary
Mutations in the aggrecan (ACAN) gene can cause short stature (with heterogeneous clinical phenotypes), impaired bone maturation, and large variations in response to growth hormone (GH) treatment. For such cases, long-term longitudinal therapy data from China are still scarce. With the development of sequencing technologies, ISS has been found, in some patients, to be caused by mutations in genes involved in the hypothalamicpituitary-growth hormone (GH) axis, such as GH1, GHR, and GHRHR (GHRH receptor) [4,5,6,7]. Genetic defects in the GH axis only constitute a small fraction of clinically diagnosed short-stature cases [8]. Defects in growth height are probably associated with other yet-to-be-identified genes [9]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have