Abstract

The quiet pandemic of herpes simplex virus (HSV) infection has plagued humanity since ancient times, causing mucocutaneous infection, such as herpes labialis and herpes genitalis. Disease symptoms often interfere with everyday activities and occasionally HSV infections are the cause of life-threatening or sight-impairing disease, especially in neonates and the immunocompromised patient population. After primary or initial infection the virus persists for life in a latent form in neurons of the host, periodically reactivating and often resulting in significant psychosocial distress for the patient. Currently, no cure is available. In the mid-1950s the first antiviral, idoxuridine, was developed for topical treatment of herpes disease and, in 1978, vidarabine was licensed for systemic use to treat HSV encephalitis. Acyclovir (Zovirax), a potent, specific and tolerable nucleosidic inhibitor of the herpes DNA polymerase, was a milestone in the development of antiviral drugs in the late 1970s. In the mid-1990s, when acyclovir became a generic drug, valacyclovir (Valtrex) and famciclovir (Famvir), prodrugs of the gold standard and penciclovir (Denavir), Vectavir), a close analogue, were launched. Though numerous approaches and strategies were tested and considerable effort was expended in the search of the next generation of an antiherpetic therapy, it proved difficult to outperform acyclovir. Notable in this regard was the award of a Nobel Prize in 1988 for the elucidation of mechanistic principles which resulted in the development of new drugs such as acyclovir. Vaccines, interleukins, interferons, therapeutic proteins, antibodies, immunomodulators and small-molecule drugs with specific or nonspecific modes of action lacked either efficacy or the required safety profile to replace the nucleosidic drugs acyclovir, valacyclovir, penciclovir and famciclovir as the first choice of treatment. Recently though, new inhibitors of the HSV helicase-primase with potent in vitro antiherpes activity, novel mechanisms of action, low resistance rates and superior efficacy against HSV in animal models have been discovered. This review summarises the current therapeutic options, discusses the potential of preclinical or investigational drugs and provides an up-to-date interpretation of the challenge to establish novel treatments for herpes simplex disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call