Abstract
A major bottleneck in the manufacturing process of a medical implant capable of biopotential measurements is the design and assembly of a conductive electrode interface. This paper presents the use of a novel 3D-printing process to integrate conductive metal surfaces on a low-temperature co-fired ceramic base to be deployed as electrodes for electrocardiography (ECG) implants for small animals. In order to fit the ECG sensing system within the size of an injectable microchip implant, the electronics along with a pin-type lithium-ion battery are inserted into a cylindrical glass tube with both ends sealed by these 3D printed composite electrode discs using biomedical epoxy. In the scope of this paper, we present a proof-of-concept in vivo experiment for recording ECG from an avian animal model under local anesthesia to verify the electrode performance. Simultaneous recording with a commercial device validated the measurements, demonstrating promising accuracy in heart rate and breathing rate monitoring. This novel technology could open avenues for the mass manufacturing of miniaturized ECG implants.Clinical relevance- A novel manufacturing process and an implantable system are presented for continuous physiological monitoring of animals to be used by veterinarians, animal scientists, and biomedical researchers with potential future applications in human health monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.