Abstract

Dynamics of fast transient events are challenging to be analyzed with high time resolution. Such events can occur in fusion plasmas such as the filaments during edge-localized modes (ELMs). In this paper, we present a robust method-the spatial displacement estimation-for estimating the displacements of structures with fast dynamics from high spatial and time resolution imaging diagnostics [e.g., gas-puff imaging (GPI)] with sampling time temporal resolution. First, a background suppression method is shown, which suppresses the slowly time-evolving and spatially non-uniform background in the signal. In the second step, a two-dimensional polynomial trend subtraction method is presented to tackle the remaining polynomial order trend in the signal. After performing these pre-processing steps, the spatial displacement of the propagating structure is estimated from the two-dimensional spatial cross-correlation coefficient function calculated between consecutive frames. The method is tested for its robustness and accuracy by simulated Gaussian events and spatially displaced random noise. An example application of the method is presented on propagating ELM filaments measured by the GPI system on the National Spherical Torus Experiment spherical tokamak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.