Abstract

Using the Density Functional Theory approach and in silico docking, the current study analyzes the inhibitory role of a novel α-aminophosphonate derivative against SARS-CoV-2 major protease (Mpro) and RNA dependent RNA polymerase (RdRp) of SARS-CoV-2. FT-IR, UV–Vis, and NMR (1H, 13C, 31P) approaches were used to produce and confirm the novel α-aminophosphonate derivative. The quantum chemical parameters were detremined, and the reactivity of the synthesized molecule was discussed using DFT at the B3LYP/6-31G(d,p) level. In addition, the inhibitory function of the investigated derivative for SARS-CoV-2 major protease (Mpro) and RNA dependent RNA polymerase (RdRp) was estimated using in silico docking. These discoveries could pave the way for novel SARS-CoV-2 therapies to develop and be tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call