Abstract

Molecular structure, molecular docking, and vibrational spectra of 2,2′-[1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f-[isoindole 2,6(1H,3H) diyl]]] diacetohydrazide molecule by density functional theory approach as human immunodeficiency virus inhibitory. Despite several investigations into anti-human immunodeficiency virus therapy, human immunodeficiency virus infection remains difficult to treat due to drug resistance. The emergence of new human immunodeficiency virus mutations has resulted in drug rejection versus Food and Drug Administration recommended drugs already in use reduced efficacy against the human immunodeficiency virus. On this basis, the density functional theory approach on B3LYP/6-311G(d,p) levels was used to determine the molecular properties of 2,2′-[1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f-[isoindole 2,6(1H,3H) diyl]]] diacetohydrazide molecule. The geometric analysis values ​​were fitted to the experimental data characterizing the stable structure of the molecule, and the molecular structure (bond length, bond angle and dihedral angle) was then determined. Electronic properties of molecular orbits (the highest occupied molecular orbital and the lowest unoccupied molecular orbital) have been studied. The calculated Fourier transform infrared and hydrogen nuclear magnetic resonance vibrational frequencies agreed well with the experimentally obtained frequencies. The inhibitory ability of the compound under study was evaluated in a molecular docking assay against the human immunodeficiency virus protein. The carbonyl group of the molecule has been shown to be critical for antiviral activity. The high binding energy (−9.40 kcal/mol) also indicates the significant antiviral activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call