Abstract
Image deconvolution continues to be an active research topic of recovering a sharp image, given a blurry one generated by a convolution. One of the most challenging problems in image deconvolution is how to preserve the fine scale texture structures while removing blur and noise. Various methods have been proposed in both spatial and transform domains, such as gradient based methods, nonlocal self-similarity methods, and sparsity based methods. However, each domain has its advantages and shortcomings, which can be complemented by each other. In this work we propose a new approach for efficient image deconvolution based on dual domain filters. In the deblurring process, we offer a hybrid method that a novel rolling guidance filter is used to ensure proper texture/structure separation, and then in the transform domain, we use the short-time Fourier transform to recover the textures while removing noise with energy shrinkage. Our hybrid algorithm that is surprisingly easy to implement, and experimental results clearly show that the proposed algorithm outperforms many state-of-the-art deconvolution algorithms in terms of both quantitative measure and visual perception quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.