Abstract

The characterization of the performance of wireless devices plays a significant role in developing radio products that meet the demands of the latest standards and deliver a satisfying user experience. With current standard total isotropic sensitivity (TIS) measurement, the transmitters are set to work at their maximum transmission power level. However, the standard TIS test procedure is unable to accurately reflect a receiver's performance because in actual usage transmitters are rarely working at their maximum power level. In measurements, different kinds of devices hold different maximum power levels. The measured radio sensitivity depends on the instantaneous local temperature of the radio, and the local temperature depends on the heat generation (power levels), the heat dissipation, and time. So the power levels and the thermal conditions could affect their radio sensitivity and, hence, the TIS. With standard TIS methods, the maximum power level and the radio's thermal condition cause ambiguity in the measurements. However, this paper proposes a new objective TIS method. With this new TIS method, the measured TIS is a function of the transmitter power level at its thermally stable condition. The proposed method resolves the ambiguity of the TIS measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call