Abstract
The abstract groupis finite for n = 4,6,7,8, and the relations are incompatible for n = 1,2,3,5. A criterion of Coxeter ((1)) suggests that (2,3,7; n) should be infinite for all n ≥ 9, but its applicability to these groups is unproved, and it is not known whether there are any further examples of finite groups (2,3,7; n). However, (2,3,7; 9) has been proved infinite by Sims ((3)), and it follows at once that (2,3,7; n) is infinite whenever n is a multiple of 9 as it then has an infinite factor group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.