Abstract
We give the first examples of finite groups G such that the Chow ring of the classifying space BG depends on the base field, even for fields containing the algebraic closure of Q. As a tool, we give several characterizations of the varieties which satisfy Kunneth properties for Chow groups or motivic homology. We define the (compactly supported) motive of a quotient stack in Voevodsky's derived category of motives. This makes it possible to ask when the motive of BG is mixed Tate, which is equivalent to the motivic Kunneth property. We prove that BG is mixed Tate for various "well-behaved" finite groups G, such as the finite general linear groups in cross-characteristic and the symmetric groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.