Abstract
1. Main results and notations. We consider Cauchy's problem for the classical wave equation in :with initial conditions u(0, x) = uo(x) and ∂tu(0, x) = u1 (x). In (1·1) δ and m2 stand for the Laplacian in and a constant respectively. Note that a second order hyper-bolic differential equation with real constants can be reduced to (1·1) ([1], p. 183). Let uj (j = 0,1) be C∞ funotions on whose support is contained in the closed ball BR = {xεl; |x| ≥R} for some R > 0. In this note we shall show that the solution u(t, x) of (1·1) possesses the following properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.