Abstract
We consider the asymptotic behavior as $t \to +\infty$ of the $L^{2}$-norm of the velocity of the linearized compressible Navier-Stokes equations in ${\bf R}^{n}$ ($n \geq 2$). As an application we shall study the optimality of the decay rate for the $L^{2}$-norm of the velocity by deriving a decay estimate from below as $t \to +\infty$. To get the estimates in the zone of high frequency we use a version of the energy method in the Fourier space combined with the Haraux-Komornik inequality and this seems much different from known techniques to study compressible Navier-Stokes system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.